Breaking the Limits: Explore the Pinnacle of Connectivity with the Best IoT SIM Cards

Which is the Best IoT SIM card?

In a world where connectivity is king, the Internet of Things (IoT) has emerged as a game-changer, seamlessly integrating devices and systems to enhance efficiency and convenience. At the heart of this digital revolution lies the unsung hero – the IoT SIM card. Join us as we embark on a journey to break the limits and explore the pinnacle of connectivity with the best IoT SIM cards of 2024.

Unveiling the Powerhouse of Connectivity

Picture this: a world where your devices communicate effortlessly, data flows seamlessly, and connectivity is not just a luxury but a necessity. This is the promise of IoT, and at its core is the choice of the correct SIM card. The best IoT SIM card is the lifeline, connecting your devices to the digital realm with unparalleled efficiency.

The Search for Excellence

With the ever-growing market of IoT SIM cards, the search for the best can be daunting. Fear not, for we’ve delved deep into the digital landscape to uncover the true champions. These SIM cards go beyond the ordinary, breaking the limits to redefine connectivity standards.

1. Unparalleled Speed and Reliability

The IoT SIM cards are not just cards but powerhouses of speed and reliability. Imagine your devices communicating at lightning speed, transmitting data without a hiccup. These SIM cards ensure a smooth and uninterrupted flow of information, making them the backbone of any IoT project.

2. Global Connectivity at Your Fingertips

No more boundaries – that’s the promise of the best IoT SIM cards. With global coverage, these cards empower your devices to join from almost anywhere on the planet. Whether your IoT project spans cities, countries, or continents, these SIM cards ensure your devices stay connected, breaking geographical barriers effortlessly.

3. Robust Security Measures

The IoT SIM cards offer robust security measures in a world increasingly concerned about data security. Your data is not just transmitted; it’s shielded by layers of encryption, ensuring confidentiality and integrity. These SIM cards provide peace of mind, knowing your IoT ecosystem can withstand potential threats.

4. Seamless Integration with IoT Ecosystems

Connectivity is not just about speed; it’s about how seamlessly your devices integrate into the larger IoT ecosystem. The IoT SIM cards aim to play well with various devices and platforms, ensuring a hassle-free integration process. Whether working with smart home devices or industrial sensors, these SIM cards are your key to a cohesive IoT network.

 5. Cost-Effective Efficiency

The IoT SIM cards excel in speed and reliability and bring cost-effective efficiency to the forefront. These cards optimize data usage, ensuring high performance without breaking the bank. Whether managing a large-scale IoT network or a smaller project, experience top-tier connectivity without compromising your budget – a defining feature of the best IoT SIM cards in 2024.

Choosing the Best IoT SIM Card for Your Project

Now that we’ve explored the features that make the IoT SIM cards stand out, how do you choose the right one for your project? It all boils down to understanding your needs and considering data requirements, geographical coverage, and security protocols.

As you embark on your quest for the best IoT SIM card, remember – it’s not just a card; it’s your gateway to the pinnacle of connectivity. Break the limits, redefine possibilities, and let your IoT devices thrive in a world where seamless connectivity is not just a choice but a necessity.

In conclusion, the best IoT SIM cards are more than just tools; they are enablers of a connected future. Explore, experiment, and elevate your IoT experience with the powerhouses of connectivity that await you in 2024. The digital realm is calling – are you ready to answer with the best IoT SIM card at your disposal?

eSIMs or Removable SIMs for IoT, Which Is Best?

Image of different IoT SIM card form factors and the dates they were released including eSIM
Plastic SIMs and eSIM (MFF2)

Introduction

Clients often ask “Which should I use, traditional plastic SIMs, or embedded SIMs  (eSIMs) for my IoT solution?” Our go-to answer is always, “It depends.” We answer this way because it really does depend on many factors.

In this article we explore the pros and cons of both eSIMs physical SIMs for IoT projects. Not all pros and cons will have equal weight for each solution developer, but we think this is a good primer on the differences of each type of IoT SIM card.

First, let’s quickly define what we are talking about. We wrote an article several years ago that spoke to the evolution of the IoT SIM card specifically relating to the evolution of the technology behind SIM cards. We talked about eUICC as an emerging tech, and we called this an “eSIM.” For the purposes of this article, we are calling the embedded SIM (MFF2 form factor) an eSIM. Physical SIM cards are typically 2FF, 3FF, or 4FF form factors, but can also be enabled with eUICC tech, making them also “eSIMs.”  “eSIM” refer to either a SIM with eUICC technology, or an embedded SIM, but these are very different things.

Embedded SIM (eSIM):

eSIM Pros:

  1. Remote Provisioning: eSIMs are provisioned remotely and programmed with the necessary network credentials using bootstrap profiles. This eliminates the need for physical access to the device, and is particularly useful for IoT devices in remote or hard-to-reach locations.
  2. Scalability: eSIMs make it easier to scale your IoT deployment because you can provision and manage a large number of devices without physically swapping SIM cards.
  3. Reduced Physical Footprint: eSIMs are integrated into the device’s hardware, saving space and allowing for more compact IoT device designs.
  4. Improved Security: eSIMs often offer enhanced security features, such as better resistance to physical tampering and improved authentication protocols.
  5. Flexibility: eSIMs can switch between different carrier profiles, providing flexibility and cost optimization as you can select the best network for a given location or situation. However, this requires the cooperation of both carriers which is not always a given. Many carriers will not allow these profile change-overs.

eSIM Cons:

  1. Initial Cost: Implementing eSIM technology may require upfront investments in hardware and infrastructure for remote provisioning and management. Even the MFF2 SIM is more costly than traditional plastic SIMs.
  2. Compatibility: Not all IoT devices are eSIM-ready, so retrofitting existing devices with eSIM capabilities can be challenging and costly.
  3. Dependency on Manufacturers: Device manufacturers must support eSIM technology for it to be effective, and not all manufacturers do, limiting device options.

Traditional Physical SIM Cards:

Physical SIM Pros:

  1. Widespread Compatibility: Traditional SIM cards are widely supported by most IoT devices and have been the standard for many years.
  2. Low Initial Cost: The cost of traditional SIM cards and card readers is generally lower than implementing eSIM technology.
  3. Interchangeability: Physical SIM cards can be easily swapped between devices, which can be useful in some situations.

Physical SIM Cons:

  1. Physical Access Required: Changing SIM cards typically requires physical access to the device, which can be impractical for remote or deployed IoT devices.
  2. Scalability Challenges: Managing a large number of physical SIM cards can be cumbersome, leading to logistical challenges as your IoT deployment scales.
  3. Security Concerns: Traditional SIM cards are more susceptible to physical tampering and unauthorized removal, potentially compromising security.
  4. Limited Network Flexibility: Switching between carriers or network profiles is more difficult with physical SIM cards, leading to potential coverage and cost inefficiencies.

The choice between eSIM technology and traditional physical SIM cards in IoT applications depends on your specific use case and requirements. eSIMs offer advantages in terms of remote management, scalability, and flexibility. Traditional SIM cards are more widely compatible and have lower initial costs. It’s essential to evaluate your project’s needs, device compatibility, and long-term scalability when making this decision.

If you would like to have a conversation with one of our experts, please fill out our contact form. The contact form is located here. One of our experts will be in touch within 1 business day.

The Use M2M SIM Cards in GPS Applications

GPS Points on a map of the world
GPS Points on a map of the world connected with M2M SIM Cards

Introduction

In the rapidly evolving landscape of technology, the Internet of Things (IoT) has emerged as a transformative force, connecting countless devices to the internet, enabling data exchange, and revolutionizing various industries. Among the groundbreaking applications of IoT, the use of M2M SIM cards in GPS (Global Positioning System) technology stands out as a game-changer. You might only think of GPS applications as tracking vehicle, but there are so many more solutions using GPS. This fusion of connectivity and GPS has opened up new frontiers in tracking, navigation, and location-based services, offering unprecedented opportunities for businesses and consumers alike.

Understanding M2M SIM Cards

Traditional SIM cards have long been used in mobile phones to connect to cellular networks. However, M2M SIM cards (AKA IoT SIM cards) are specifically designed to cater to the unique requirements of connected devices that fall under the purview of the Internet of Things. These SIM cards offer features like lower power consumption, enhanced security, and the ability to manage data usage efficiently.

Seamless Connectivity for GPS Devices

GPS devices, whether they are in vehicles, wearable gadgets, asset trackers, or environmental sensors, need reliable and continuous connectivity to function effectively. M2M SIM cards provide seamless connectivity across multiple networks, ensuring uninterrupted GPS data transmission. By leveraging these M2M SIM cards, GPS applications can operate without limitations, even in remote or challenging environments.

Real-Time Tracking and Fleet Management

IoT-powered GPS devices enable real-time tracking of vehicles, assets, and personnel. Fleet management becomes more efficient and productive, as businesses can monitor their vehicles’ locations, routes, and driving behavior in real time. This data-driven approach enhances safety, optimizes routes, reduces fuel consumption, and increases overall operational efficiency.

Precision and Accuracy

The integration of SIM cards with GPS applications enhances location accuracy significantly. IoT SIM cards ensure that the GPS devices remain connected to the strongest available network, reducing potential disruptions and enhancing precision. For industries such as agriculture and logistics, where precise location data is critical, this level of accuracy proves to be invaluable.

Geo-Fencing and Location-Based Services

Geo-fencing, a popular feature in GPS applications, allows users to set virtual boundaries around a specific location. When a GPS-equipped device enters or exits these predefined areas, it triggers automated actions or notifications. IoT SIM cards facilitate instant communication between the device and the backend systems, ensuring quick response times and seamless execution of location-based services.

Cost-Effective Data Management

IoT SIM cards offer flexible data plans tailored to the unique data requirements of various GPS devices. This flexibility allows businesses to manage data consumption efficiently, reducing unnecessary costs. Whether it’s occasional location updates or continuous real-time tracking, SIM cards provide cost-effective solutions to suit diverse GPS applications.

Environmental Monitoring and Smart Cities

IoT-enabled GPS devices play a crucial role in environmental monitoring, allowing researchers and authorities to gather data on air quality, weather patterns, and other environmental factors. Additionally, in the context of smart cities, M2M SIM cards are instrumental in supporting connected infrastructure and optimizing urban services like traffic management and waste collection.

Enhanced Security and Anti-Theft Measures

IoT SIM cards offer robust security features, safeguarding the data transmitted between the GPS devices and the backend servers. In case of theft or unauthorized access, these SIM cards enable remote device lock-down or data wipeout, mitigating potential risks and ensuring the protection of sensitive information.

Emergency Response and Personal Safety

GPS applications utilizing IoT SIM cards have proven to be life-saving tools in emergency situations. From locating lost or injured hikers to enabling rapid response during disasters, IoT-powered GPS devices provide critical location information to emergency services, expediting rescue operations and improving personal safety.

Scalability and Future Potential

As the IoT ecosystem expands, the application of SIM cards in GPS technology will continue to evolve. With the growth of 5G networks and advancements in satellite technology, the scope for GPS applications will expand, leading to more sophisticated and innovative use cases in domains such as autonomous vehicles, precision agriculture, and augmented reality.

Conclusion

The integration of M2M SIM cards with GPS applications has ushered in a new era of connectivity, precision, and efficiency.  GPS devices can now offer real-time tracking, enhanced security, and cost-effective data management. This is achieved using SIM Card connectivity. This seamless connectivity ensures that GPS applications can thrive in diverse environments. It unlocks a wealth of opportunities across industries, from fleet management and logistics to environmental monitoring and emergency response. As technology continues to advance, the synergy between cellular connectivity and GPS applications will undoubtedly lead to even more innovative solutions and transformative changes in the way we navigate and interact with the world around us.

If you would like to learn more about IoT SIM cards in GPS Applications, please reach out to us. You can request information by filling out our Contact Form. OneSimCard has been working with thousands of GPS application providers and we will be happy to share what we have learned in our over 27 years in Telecoms.

What Shakespeare says about OneSimCard’s IoT SIM Card

 

Oh, fair audience, lend me your ears, for I shall speak of OneSimCard IoT and its wondrous IoT SIM card. In this age of technological marvels, where devices converge and speak in unison, OneSimCard IoT doth shine bright as a beacon of connectivity and enlightenment.

Behold, the IoT SIM cards, the conduits of digital communication, through which devices may interconnect and exchange information. Like tiny messengers traversing a vast electronic realm, they carry data with unparalleled speed and precision.

With OneSimCard IoT SIM cards, the world of the internet of things unfolds before our very eyes. Devices, once mere inanimate objects, awaken to a symphony of interwoven data. Machines, sensors, and contrivances speak in a language of their own, sharing knowledge and insight without the need for human intervention.

Imagine, dear friends, the possibilities that these IoT SIM cards unfold. In factories, they monitor the rhythm of production, ensuring efficiency and quality. In cities, they orchestrate the symphony of traffic and energy, harmonizing the flow of life. And in homes, they bring forth a realm of smart living, where convenience and sustainability intertwine.

But ’tis not just the capabilities of these SIM cards that doth astound, for their reliability is as steadfast as a mountain’s foundation. In the harshest environments, from scorching deserts to icy tundra, these SIM cards endure, connecting devices without falter. They are the steadfast companions in this ever-changing landscape of technology.

And let us not forget the support and guidance that OneSimCard doth provide. Their team of experts, wise as sages, stand ready to assist those embarking on the journey of IoT. With their knowledge and expertise, they illuminate the path, ensuring success and prosperity for all who venture forth.

So, let us embrace this wondrous world of OneSimCard IoT and its IoT SIM cards. Let us marvel at the interconnectivity of devices and the boundless potential that lies before us. For in this realm, the union of art and technology doth flourish, creating a tapestry of innovation and enlightenment.

If you are interested in learning more about OneSimCard IoT and the capabilities of our IoT SIM Card connectivity fill out our contact form and one of our experts will schedule a time for a discussion.

(This is obviously us having fun with AI and not the actual words of Shakespeare!)

Using IoT SIM Cards in Alarm Systems

IoT Sim Cards in Alarms

The Internet of Things (IoT) has revolutionized the way we live, work, and interact with our surroundings. One of the most important applications of IoT technology is in the field of security and safety, where it is used to create smart alarms that can detect and respond to various threats. IoT SIM cards are a key component of these smart alarms, allowing them to communicate with other devices and systems over cellular networks. In this article, we will explore the use of IoT SIM cards for alarms and provide five examples of how they are used.

What are IoT SIM cards?

An IoT SIM card is a special type of SIM card that is designed for use in IoT devices. These devices are typically low-power and low-data-rate, and they require a specialized SIM card that can handle their specific communication needs. IoT SIM cards are designed to work with cellular networks and are capable of communicating with other IoT devices and systems over the internet.

Using IoT SIM cards for alarms

IoT SIM cards are an essential component of smart alarms, which are alarms that are capable of detecting and responding to various threats. These alarms use a variety of sensors, such as motion sensors, temperature sensors, and smoke detectors, to monitor the environment and detect potential threats. When a threat is detected, the alarm sends a notification to the user or a central monitoring system, which can then take appropriate action. Here are five examples of how IoT SIM cards are used in smart alarms:

  1. Home security systems

SIM cards are commonly used in home security systems, which are designed to protect homes and families from burglary and other threats. These systems typically include a variety of sensors, such as door and window sensors, motion sensors, and cameras, that monitor the home and detect potential threats. When a threat is detected, the system sends a notification to the user or a central monitoring system over the cellular network.

  1. Fire alarms

SIM cards are also used in fire alarms, which are designed to detect and respond to fires. These alarms use a variety of sensors, such as smoke detectors and heat detectors, to monitor the environment and detect potential fires. When a fire is detected, the alarm sends a notification to the user or a central monitoring system over the cellular network.

  1. Flood alarms

Flood alarms are another example of smart alarms that use SIM cards. These alarms use sensors to detect water levels and other indicators of flooding, such as humidity and temperature. When a flood is detected, the alarm sends a notification to the user or a central monitoring system over the cellular network.

  1. Industrial alarms

SIM cards are also used in industrial alarms, which are designed to detect and respond to various threats in industrial settings. These alarms use a variety of sensors, such as pressure sensors and temperature sensors, to monitor industrial equipment and detect potential problems. When a problem is detected, the alarm sends a notification to the user or a central monitoring system over the cellular network.

  1. Medical alarms

SIM cards are also used in medical alarms, which are designed to monitor patients and detect potential medical emergencies. These alarms use a variety of sensors, such as heart rate monitors and blood pressure monitors, to monitor the patient’s vital signs and detect potential problems. When a problem is detected, the alarm sends a notification to the user or a central monitoring system over the cellular network.

Conclusion

IoT SIM cards are a key component of smart alarms, which are alarms that are capable of detecting and responding to various threats. These alarms use a variety of sensors to monitor the environment and detect potential threats, and they use IoT SIM cards to communicate with other devices and systems over cellular networks. IoT SIM cards are used in a variety of applications, including home security systems, fire alarms, flood alarms, industrial alarms, and medical alarms.

OneSimCard IoT is a global leader in IoT SIM Card Connectivity for deployments around the world. A division of Belmont Telecom, Inc., OneSimCard IoT helps customers in the remote alarm industry and many other industries connect their “things” using IoT SIM cards. Our IoT SIM cards are used internationally by companies of all sizes. If you are interested in learning more, please contact us by filling out our Contact Form.

Vehicle Telematics Client Goes Global: Case Study

Connected Vehicle with Connected Lines of Data
Vehicle telematics connect many systems in a vehicle

Introduction

Vehicle Telematics has been a continually growing field for many years and has become a very mature category for connectivity. In this article we discuss a Vehicle Telematics client who has been with us for over 7 years. They operated in North America and decided to expand their reach beyond North America. With over 20,000 connected vehicles on our platform, going worldwide will increase the addressable market by over 10X (based on their estimates). They not only track GPS location and speed of vehicles for their customers, but also have solutions that read and report data points like, hard acceleration and deceleration, engine diagnostics, cargo temperature, and moisture levels, accessory activation (think plow up/plow down for snow plowing equipment), and many, many more data points on which they report.

The Challenge

It’s one thing to do business in North America. When you want to expand your business to other continents and many other countries, all of your operational challenges grow exponentially. IoT SIM Card connectivity is one of these operational obstacles. There are several ways to overcome this problem though. Some organizations choose to get native IoT SIMs in each country . As you grow globally, this strategy is less and less efficient when adding more and more countries to your marketing plan. You must:

    • Source the IoT SIM cards from a local provider. Sourcing from new providers can take you back through an RFP process and hoping upon hope that you choose wisely;
    • Configure your devices correctly. Each new connectivity provider has its own settings (APN, etc.) which you will have to maintain new SKU’s for each country and had the devices setup either at the factory when ordering new shipments, or locally by your Operations team in country;
    • Learn new platforms. Many M2M SIM Card companies have their own software and when you start to use several providers, now you have to learn new platforms (and remember all those new passwords!!), setup new API’s, and remember which provider is for which country…nightmare!!
    • Deal with currency exchange rates. Yes, this is a consideration! Working in new countries means dealing with new currencies, and the frequency by which currencies vary can keep your Finance team up at night.

Go Global for Vehicle Telematics Connectivity

Another strategy to overcome the struggle with global expansion for Vehicle Telematics connectivity is to choose a provider with a global footprint. Global  IoT SIM card connectivity providers are not all the same, though, and there can be pitfalls when choosing the right one for you. We talked about the considerations for choosing the right provider in a previous post.  One of the things we talked about was coverage. Having service available in the countries you are going to market your Vehicle Telematics solution is obviously critical, but having multiple networks available is also very important for redundancy.  But how does a global IoT SIM card provider solve the issues mentioned above?:

    1. Sourcing SIM cards. Having a true global IoT SIM card provider eliminates having to search for a provider in each country you open for new marketing. You can rely on the same team you are used to working with and there is no need to go through a new purchasing process
    2. Configuring your devices. Your Vehicle Telematics devices can be setup the same way for any country you want the device in which it operates. Global IoT SIM card providers have a single APN setting and this eliminates the problem of multiple SKUs for each country to which you are sending devices.
    3. Learning new platforms. This goes without saying. Keeping the same provider means you only have one platform to learn. All of the API’s are also the same, so integration to your portal is simple.
    4. Currency fluctuations. Having one provider means that you are working with a single currency. The fluctuations in currencies aren’t going to have an impact.

The Solution 

Our customer looked at the different options outlined above. They decided the wise choice was to use OneSimCard IoT as their provider for their global expansion. This was a simple decision though. They know us and our platform very well, and have integrated their portal with ours through APIs. They understood we were able to provide service in all of the countries to which they were looking to expand, while keeping service costs low. There were several countries where the cost of service was significantly higher. For these countries we created a parent/child account structure. With this structure they could isolate these higher cost countries from the lower cost countries.

We also worked with the client to simplify logistics. We are sending the IoT SIM cards directly to their factory. By doing this, the factory can test the units before they leave the facility. We provide them with free data for this testing. Sending the SIM cards to a single facility had another benefit because they saved on shipping costs.

How Can We Help Connect Your Vehicle Telematics Solution?

If you would like to learn more about OneSimCard IoT and how we can help you, please reach out! One of our IoT experts will be happy to speak with you. We can be reached by email at sales at onesimcard.com. You can also fill our our Contact Form. On this form you can provide a little information about your requirements and one of our team members will be in touch for a quick initial call.

IoT SIM Card Deployments in Global AgTech: A Case Study

IoT Sim cardfor AgTech
AgTech IoT SIM card Connectivity

Introduction

As Agricultural Technology grows (pun intended) in popularity around the world, connecting all of these “things” is increasingly more difficult. International implementations face many obstacles. We focus on the issues with IoT SIM card use in worldwide operations. Some of the same complications occur in single country use as well. Streamlining these deployments saves time, money & headaches. This article focuses on one such case.  We will discuss a soil moisture sensor company struggling with their multi-national deployments. We will cover their solution, their initial problem, the steps they took to remedy the situation, and the solution they chose.

The Customer’s Description

As a Start-Up, this company needed to grow fast and were sending their moisture sensors all over the world, and they had pilots currently running in 27 different countries. Their solution includes a mesh network of wireless sensors spread over the fields of a grower and all of the data aggregated in a gateway device that sends all of the data back to a server for analysis and reporting on their UI. The gateway device is a standard rugged router. It uses a 3FF global IoT SIM card powering the connection to the back end through cellular networks. The gateway required bi-directional proactive communication because they needed to reach the gateway from time to time on demand.  Their sensors test the soil every 3 hours. The total amount of data per gateway averages 72MB per month.

The Problem

They struggled with how they would put together a solution for all of these disparate countries, though. It takes time and resources to find an IoT SIM card provider in each country. Using these various providers further complicates matters because they had to manage multiple SIM management portals, multiple APNs, SKUs for each IoT SIM card provider, and several languages to deal with (English, French, Spanish, Portuguese, Russian, Chinese, and German to name a few).

All of this takes time and resources. As a small company, their time really does mean money, because navigating all of the vendors, and programming their routers based on where the devices were being sent took time away from marketing and selling their solution. They estimated it took 47% of their time finding local cellular providers. Also setting up the new vendors’ APN’s and SKUs into their workflow, learning a new portal for SIM card management, etc., etc. That is all time when they could be building a strong sales funnel, meeting with new prospects, working on marketing  efforts, and so forth.  They estimated if they could focus 47% more time on these tasks, their annual revenue would grow over $1M.

What They Tried

Over the last 6 months they tried to standardize their connectivity providers to a smaller number. They thought this would solve the issues. What they discovered was that it did help, but the benefits were not sufficient. The CTO and COO still had to think about how devices needed to be configured for each country. They also had to manage multiple platforms which takes time to learn and implement different portals and the API’s each portal used (if they supported API’s). They also had different IP ranges to deal with, where a single IP range would be easier to manage because they could used a single VPN with a single IP range.

The OneSimCard IoT Sim Card Solution

OneSimCard IoT logoWe came to the table with our ears open. We heard their problems and developed a solution tailored to their particular needs. What we came up with was a single, Multi-IMSI, eUICC enabled  Global IoT SIM card. Our IoT SIM card  is used virtually anywhere in the world with a single APN. OneSimCard IoT covers 200+ countries and territories.  A single APN means they are able to set-up all of their devices the same, regardless of the device’s destination.

We also provided the client a single private static IP range large enough to support all of their IoT SIM card deployments for the foreseeable future. We recommended an OpenVPN solution for their bidirectional proactive communication to their cellular gateways. Because it only allows one concurrent user, OpenVPN is a low cost alternative to our IPSec VPN solution. It provides the communication this client needed, though.

The client also benefited from the use of our OSCAR SIM management Portal.  OSCAR is built in-house from the ground up. When a customer wants to make a change, we make that change quickly. This flexibility helps our clients by catering to their specific requirements without over-complicating the experience. OneSimCard IoT’s portal is cloud based and has mobile apps available on Google Play as well as Apple’s App Store. We also provide a full set of API’s to our Portal. This allowed the client to tie their portal to ours with only one set of API’s.

The Result

The benefit was immediate. Streamlining to a single provider gave the client back their valuable time. They now can concentrate more time and resources on revenue producing activities. In the first month since the change to OneSimCard IoT, they were able to implement 20% more solutions. They also were able to add 25% more new opportunities into their sales funnel. If 5% of these prospects close, this adds $1.5M in annual revenue.

If you have an AgTech solution, or any other IoT solution that needs connectivity, contact us. Our IoT experts will be happy to listen to your requirements and develop a solution just for you. The best way to reach is is by email sales@onesimcard.com. You can also fill out our contact form, and we will be in touch!

New Features Added to M2M SIM Card OSCAR Platform

New SIM Search Filter Added for SIMs with IMEI Lock

An M2M Sim card client requested to search for all M2M SIM cards with the IMEI lock enabled. With this update, M2M SIM cards with the IMEI lock engaged are now quickly identified. Many devices can be changed because the M2M SIM cards with the lock can be unlocked. This was particularity important for this client moving IoT SIMs from older 3G devices to their new 4G devices. Once the SIMs that had the lock were identified there is now a new bulk operation to remove the IMEI lock.

imei lock filter.jpg
M2M SIM card filter list

 

New Bulk Operation Added to Remove IMEI Lock

In concert with the above IoT Sim card filter, we added a new bulk operation to remove IMEI locks on many SIMs at once. This additional functionality makes the process of SIM card IMEI locks much faster because the administrator no longer has to go in the the SIM settings for each SIM to remove the lock. If you have thousands of M2M SIM cards, this was very time consuming. An administrator can now perform this function to many M2M SIM cards at once.

Bulk operations for M2M SIM card

Contact Us!

We welcome feedback! If you have any feedback on our IoT SIM card OSCAR Platform, please send us a note. You can reach us at feeback@onesimcard.com.

If you would like to speak with one of our M2M SIM Card experts, please reach out to us at Sales@onesimcard.com. You can also submit a custom quote request on our site. We will develop a solution specific to your requirements.

New API & New IoT Sim Card

New API Command Available for SIM Card Reset

We continue to listen to our IoT clients and their requests for improvements to our OSCAR IoT SIM Card Management Portal. There is now an API command for both Pooled and PAYG accounts, allowing a SIM reset. A SIM card reset takes the IoT SIM card off the network and allows it to re-register. Before now, this tool was only available on the Portal in the Service tab. There are many customers who prefer to manage most of the tools for their global IoT SIM Cards off the OSCAR management portal. This new API will help with initial troubleshooting of the IoT SIM.

New SIM Card Type Being Launched

For customers using the TCNS IoT SIM card type, you will start to see orders being filled with a new IoT SIM card named “TCNS – E”. This SIM will give you the same outstanding service you are used to, & will add some network operators. The most notable change is in Canada where we are adding Telus and Bell. Now all three major networks in Canada are available. There are also many other countries coming to this Multi-IMSI TCSN-E IoT SIM card. This is great news as we continue to grow our global IoT SIM card footprint and build more network redundancy!

If you have any questions about these enhancements to our IoT SIM card management portal, OSCAR, or any other suggestions or comments, please reach out to feedback@onesimcard.com.

2 Updates to the OSCAR IoT SIM Management Portal

New API Command Available for Updating User Name and Device Fields

We added a new API command for both Pooled and PAYG accounts This command will allow you to update the User Name and Device fields for your IoT SIM Cards in the OSCAR portal. This is especially useful when you are using your own portal to activate IoT SIMs & include the User Name (nickname). The User Name & Device Type are now populated to our OSCAR portal automatically through API. Before now, these fields could only  be updated on the Portal in separate tabs. Automating this process is a great time-saver!

New Feature in the OSCAR Portal Allows for Updating/Making Changes to up to 200 SIMs at a Time

Before this update, the maximum number of SIMs that can be displayed on the SIM card page was 100. You could select up to all 100 and perform a bulk operation on these SIMs.  Also, these SIMs had to be in certain logical order (sorted by SIM #, ICCID, Status, etc.). If you wanted to work on SIM cards that were not consecutive in this logical order, or only some of those SIMs but not all, you needed to select (or deselect) only those which you want to work on. Last month, we added functionality to upload a CSV file into the portal with the SIM card numbers on which you want to work. You will see this file upload option at the top of the SIM card page. This upload tool allows you to load a CSV file with up to 200 SIM cards at a time. Now you can work on more SIMs at once, and choose the SIMs you on which you want to work based on the file you uploaded (maybe it was a report you ran, etc.).

If you have any questions on these new functions or any other questions on the OSCAR IoT SIM card management portal, please reach out to our IoT experts at Sales@OneSimCard.com.